Counterfactuals and Updates In a Causal Setting

Alexander Bochman

Holon Institute of Technology (HIT) Israel

BRA2015

Pearl's Causal Models

Causal model $M=\langle U, V, F\rangle$

(i) U is a set of background (exogenous) variables, V is a finite set of endogenous variables.
(ii) F is a set of functions $f_{i}: U \cup\left(V \backslash\left\{V_{i}\right\}\right) \mapsto V_{i}$ for each $V_{i} \in V$.
F is represented by equations $v_{i}=f_{i}\left(p a_{i}, u_{i}\right)$, where $P A_{i}$ (parents) is the unique minimal set in $V \backslash\left\{V_{i}\right\}$ sufficient for representing f_{i}.

Every instantiation $U=u$ determines a "causal world" of the model.

Submodels

A submodel M_{x} of M is obtained by replacing F with the set:

$$
F_{X}=\left\{f_{i} \mid V_{i} \notin X\right\} \cup\{X=x\} .
$$

Submodels provide answers to counterfactual queries.

Propositional reformulation

Propositional atoms are partitioned into a set of exogenous atoms and a finite set of endogenous atoms.

- A Boolean structural equation is an expression of the form $A=F$, where A is an endogenous atom and F is a propositional formula in which A does not appear.
- A Boolean causal model is a set of Boolean structural equations $A=F$, one for each endogenous atom A.
- A solution (or a causal world) of a Boolean causal model M is any propositional interpretation satisfying $A \leftrightarrow F$ for all $A=F$ in M.

Submodels

If I is a truth-valued function on a set X of endogenous atoms, the submodel M_{X}^{\prime} of M is obtained from M by replacing every equation $A=F$, where $A \in X$, with $A=I(A)$.

Firing squad

U, C, A, B, D stand for "Court orders the execution", "Captain gives a signal", "Rifleman A shoots", "Rifleman B shoots", and "Prisoner dies."
The Boolean causal model $\quad\{C=U, A=C, B=C, D=A \vee B\}$ has two solutions, which give us a prediction $\neg A \rightarrow \neg D$:

If rifleman A did not shoot, the prisoner is alive.
an abduction $\neg D \rightarrow \neg C$, and even a transduction $A \rightarrow B$:
If the prisoner is alive, the Captain did not signal.
If rifleman A shot, then B shot as well.
The submodel $\{C=U, A=\mathbf{t}, B=C, D=A \vee B\}$ implies $\neg C \rightarrow(D \wedge \neg B)$, which justifies

If the captain gave no signal and rifleman A decides to shoot, the prisoner will die and B will not shoot.

First-order reformulation

Object constants are partitioned into rigid, exogenous, and a finite set of endogenous symbols.

- A structural equation is an expression $c=t$, where c is endogenous, and t a ground term in which c does not appear.
- A causal model is a first-order interpretation of rigid and function symbols, plus a set of structural equations $c=t$, one for each endogenous symbol c.
- A causal world of a causal model M is an extension of the interpretation of rigid and function symbols in M to the exogenous and endogenous symbols that satisfies all equalities $c=t$ in M.

Submodels

For a set X of endogenous symbols and a function I from X to the set of rigid constants, the submodel M_{X}^{l} of M is the causal model obtained from M by replacing every equation $c=t$, where $c \in X$, with $c=I(c)$.

An Ideal Gas model

The physical setup: a closed gas container with variable volume that can be heated. Pressure (P) and volume (V) are endogenous, while temperature (T) is exogenous.

$$
P=c \cdot \frac{T}{V} \quad V=c \cdot \frac{T}{P}
$$

Fixing the volume V produces a submodel

$$
P=c \cdot \frac{T}{V} \quad V=v
$$

that corresponds to the Gay-Lussac's Law: pressure is proportional to temperature (though the temperature is not determined by the pressure). Similarly, fixing the pressure P gives a submodel

$$
P=p \quad V=c \cdot \frac{T}{P}
$$

that represents the Charles's Law: volume is proportional to temperature (though not vice versa).

Causal Calculus

Propositional case

Causal rules: $A \Rightarrow B$, where A, B are classical propositional formulas.
A causal theory Δ is a set of causal rules.

$$
\Delta(u)=\{B \mid A \Rightarrow B \in \Delta, \text { for some } A \in u\}
$$

Nonmonotonic Semantics

A world α is an exact model of a causal theory Δ if it is a unique model of $\Delta(\alpha)$.

$$
\alpha=\operatorname{Th}(\Delta(\alpha))
$$

Exact world is closed wrt the causal rules, and any proposition in it is caused (explained).

Determinate causal theories and completion

Determinate causal theory: heads are literals or f. A determinate causal theory is definite if no literal is the head of infinitely many rules.

The (literal) completion of a definite causal theory Δ is the set of classical formulas

$$
p \leftrightarrow \bigvee\{A \mid A \Rightarrow p \in \Delta\} \quad \neg p \leftrightarrow \bigvee\{A \mid A \Rightarrow \neg p \in \Delta\}
$$

for every atom p, plus the set $\{\neg A \mid A \Rightarrow \mathbf{f} \in \Delta\}$.

Proposition (McCain\&Turner 1997)

The nonmonotonic semantics of a definite causal theory coincides with the classical semantics of its completion.

Causal Logic (Bochman 2003)

Causal inference relations:
(Strengthening) If $A \vDash B$ and $B \Rightarrow C$, then $A \Rightarrow C$;
(Weakening) If $A \Rightarrow B$ and $B \vDash C$, then $A \Rightarrow C$;
(And) If $A \Rightarrow B$ and $A \Rightarrow C$, then $A \Rightarrow B \wedge C$;
(Or) If $A \Rightarrow C$ and $B \Rightarrow C$, then $A \vee B \Rightarrow C$;
(Cut) If $A \Rightarrow B$ and $A \wedge B \Rightarrow C$, then $A \Rightarrow C$;
(Truth/Falsity) $\quad \mathbf{t} \Rightarrow \mathbf{t} ; \quad \mathbf{f} \Rightarrow \mathbf{f}$.

Logical Semantics

$A \Rightarrow B$ is valid in a Kripke model (W, R, V) if, for any worlds α, β such that $R \alpha \beta$, if A holds in α, then B holds in β.

A modal representation of causal rules: $\quad A \Rightarrow B \equiv A \rightarrow \square B$.

Causal Logic

Adequacy and strong equivalence

Let \Rightarrow_{Δ} be the least causal inference relation that includes a causal theory Δ.

Adequacy

Exact models of Δ coincide with the exact models of \Rightarrow_{Δ}.
Causal theories Δ and Γ are

- strongly equivalent if, for any set Φ of causal rules, $\Delta \cup \Phi$ has the same nonmonotonic semantics as $\Gamma \cup \Phi$;
- causally equivalent if $\Rightarrow_{\Delta}=\Rightarrow_{\Gamma}$.

Strong equivalence

Causal theories Δ and Γ are strongly equivalent if and only if they are causally equivalent.

First-order causal calculus (Lifschitz 1997)

Causal rules: $G \Rightarrow F$, where F and G are first-order formulas.
A first-order causal theory Δ is a finite set of causal rules and a list \mathbf{c} of object, function and predicate constants - the explainable symbols of Δ.

$$
\Delta(v \mathbf{c}) \equiv \bigwedge\left\{\forall \mathbf{x}\left(G \rightarrow F_{v \mathbf{c}}^{\mathbf{c}}\right) \mid G \Rightarrow F \in \Delta\right\},
$$

where $F_{v c}^{c}$ is the result of substituting new variables $v \mathbf{c}$ for \mathbf{c} in F.
The nonmonotonic semantics of the causal theory Δ is described by

$$
\forall v \mathbf{c}(\Delta(v \mathbf{c}) \leftrightarrow(v \mathbf{c}=\mathbf{c})) .
$$

The interpretation of the explainable symbols is the only interpretation that is determined, or "causally explained," by the rules of Δ.

Functional completion

If every explainable symbol of Δ is an object constant, and Δ consists of rules of the form

$$
G(x) \Rightarrow c=x,
$$

one for each explainable symbol c, then the (functional) completion of Δ is the conjunction of the first-order sentences

$$
\forall x(c=x \leftrightarrow G(x))
$$

for all rules of Δ.

Two-level representation

Pearl's causal models

- Structural equations and their solutions
- Interventions/submodels

Causal calculus

- Nonmonotonic semantics
- Causal logic

The Representation
 Propositional case

For a Boolean causal model M, Δ_{M} is the propositional causal theory consisting of the rules

$$
F \Rightarrow A \quad \neg F \Rightarrow \neg A
$$

for all equations $A=F$ in M and the rules

$$
A \Rightarrow A \quad \neg A \Rightarrow \neg A
$$

for all exogenous atoms A of M.

Theorem

The causal worlds of a Boolean causal model M are identical to the exact models of Δ_{M}.

Firing squad, continued

The causal theory Δ_{M} for the firing squad example:

$$
\begin{aligned}
U & \Rightarrow C, \neg U \Rightarrow \neg C, \\
C \Rightarrow A, \neg C & \Rightarrow \neg A, \quad C \Rightarrow B, \neg C \Rightarrow \neg B, \\
A \vee B & \Rightarrow D, \neg(A \vee B) \Rightarrow \neg D, \\
U & \Rightarrow U, \neg U \Rightarrow \neg U .
\end{aligned}
$$

This causal theory has two exact models, identical to the solutions (causal worlds) of M.

The Representation

Subtheories

Given a set X of atoms and a truth-valued function I on X, the subtheory Δ_{X}^{\prime} of a determinate causal theory Δ is obtained from Δ by

- removing all rules $A \Rightarrow p$ and $A \Rightarrow \neg p$ with $p \in X$, and
- adding $\mathbf{t} \Rightarrow p$ for each $p \in X$ such that $I(p)=\mathbf{t}$,
- adding $\mathbf{t} \Rightarrow \neg p$ for each $p \in X$ such that $I(p)=\mathbf{f}$.

Example (Firing squad, continued)

The submodel $M_{\{A\}}^{l}$ with $I(A)=\mathbf{t}$ corresponds to the subtheory $\Delta_{\{A\}}^{\prime}$:

$$
\begin{gathered}
U \Rightarrow C, \neg U \Rightarrow \neg C, \\
\mathbf{t} \Rightarrow A, \\
C \Rightarrow B, \neg C \Rightarrow \neg B, A \vee B \Rightarrow D, \neg(A \vee B) \Rightarrow \neg D, \\
U \Rightarrow U, \neg U \Rightarrow \neg U .
\end{gathered}
$$

First-order Representation

For a first-order causal model M, Δ_{M} is the first-order causal theory whose explainable constants are the endogenous symbols of M, and whose rules are

$$
x=t \Rightarrow x=c
$$

for every structural equation $c=t$ from M.

Theorem

An extension of the interpretation of rigid and function symbols in M to the exogenous and endogenous symbols on a universe of cardinality >1 is a solution of M iff it is a nonmonotonic model of Δ_{M}.

Summary

- The causal calculus provides an adequate logical framework for representing and computing updates and counterfactuals in a causal setting.

